
HyperLoom: A Platform for Defining and Executing Scientific
Pipelines in Distributed Environments

Vojtěch Cima

IT4Innovations, Czech Republic

vojtech.cima@vsb.cz

Stanislav Böhm

IT4Innovations, Czech Republic

stanislav.bohm@vsb.cz

Jan Martinovič

IT4Innovations, Czech Republic

jan.martinovic@vsb.cz

Jiří Dvorský

IT4Innovations, Czech Republic

jiri.dvorsky@vsb.cz

Kateřina Janurová

IT4Innovations, Czech Republic

katerina.janurova@vsb.cz

Tom Vander Aa

IMEC, Belgium

tom.vanderaa@imec.be

Thomas J. Ashby

IMEC, Belgium

ashby@imec.be

Vladimir Chupakhin

Computational Biology, Discovery

Sciences, Janssen Pharmaceutica NV

vchupakh@its.jnj.com

ABSTRACT
Real-world scienti�c applications often encompass end-to-end data

processing pipelines composed of a large number of interconnected

computational tasks of various granularity. We introduce Hyper-

Loom, an open source platform for de�ning and executing such

pipelines in distributed environments and providing a Python in-

terface for de�ning tasks. HyperLoom is a self-contained system

that does not use an external scheduler for the actual execution of

the task. We have successfully employed HyperLoom for executing

chemogenomics pipelines used in pharmaceutic industry for novel

drug discovery.

KEYWORDS
HPC, Scienti�c Pipeline, Machine Learning, Big Data, Distributed

Computing, Chemogenomics, Task Scheduling

1 INTRODUCTION
Scienti�c workloads are often composed of several consecutive

computational phases. These phases are then combined into more

complex data �ows, which provide higher level functionality such

as model cross-validation or hyper-parameter search. This results

in pipelines having a shape of large directed acyclic computational

graphs, whose nodes represent computational units – tasks. Figure 1

shows an example of such a pipeline. We present HyperLoom, an

open source framework that simpli�es de�nition and execution of

end-to-end data processing pipelines in distributed environments.

It is noteworthy that HyperLoom is a full-stack solution featuring

its own task scheduling and execution engine that is not using any

other resource scheduler as a backend.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for pro�t or commercial advantage and that copies bear this notice and the full citation

on the �rst page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior speci�c permission and/or a

fee. Request permissions from permissions@acm.org.

PARMA-DITAM ’18, Manchester, United Kingdom
© 2018 ACM. 978-1-4503-6444-7/18/01. . . $15.00

DOI: 10.1145/3183767.3183768

Being aware that the area of executing tasks in distributed en-

vironments has been extensively studied for several decades, we

describe several of the existing solutions in the context of our

problem. Many of the existing and widely used data processing

frameworks such as Hadoop [9], Spark [11], or HTCondor [5] do

not allow �ne grained inter-task dependencies to be speci�ed. Tools

such as SciLuigi [6], DAGman [2], or Pegasus [3] allow users to

de�ne custom inter-task dependencies but introduce other issues.

These tools often rely on traditional resource schedulers that are op-

timized for coarse-grain long-running tasks and for which the time

needed for resource allocation may create a signi�cant scheduling

overhead when executing short running tasks. Also, the inter-task

data transfers are usually performed using a shared distributed

�le system, which becomes a performance bottleneck, especially

in cases when large number of tasks generate a large number of

I/O operations. Dask/Distributed [7] overcomes many of the limita-

tions described above. Namely, it handles short running tasks and

allows the �lesystem usage to be reduced. However, similarly to

the other tools, it does not support native pipelining of third-party

applications.

HyperLoom is designed to mitigate the limitations mentioned

above by implementing an optimized task scheduling algorithm,

direct inter-task data transfer that reduces �le system usage, a pow-

erful task abstraction that enables to pipeline a variety of task types

including third-party applications, scalable HPC native architecture,

and a python API for easy user interaction. This is challenging for

several reasons. The task execution time is not known in advance

and may vary from milliseconds (short running tasks) up to days

(long running tasks). Similarly, the size of the output generated by

a task is not known before the task completes. Pipelines may con-

tain a large number of various non-trivially interconnected tasks.

Distributed environments, namely HPC clusters, contain thousands

of computational cores, and di�erent computational nodes may

provide various resources with di�erent capabilities.

This paper is organized as follows. Section 2 discusses Hyper-

Loom design decisions and describes the architecture. Section 3

details HyperLoom task scheduling process. We evaluate and dis-

cuss HyperLoom performance in Section 4. Finally, we conclude in

Section 5.

11

Figure 1: An example of a HyperLoom pipeline visualized as
a directed acyclic graph where graph nodes represent com-
putational tasks.

2 ARCHITECTURE
This section discusses the HyperLoom design philosophy and ar-

chitecture based on the challenges described above.

2.1 Design Decisions
To design a solution that tackles the challenges introduced earlier,

we de�ne the following design goals.

Low scheduling overhead – The scheduling process has to be

su�ciently fast since we also have to deal with relatively short

running tasks (< 1 second) for which the scheduling time may rep-

resent a signi�cant portion of the actual execution time. Su�cient
scheduling quality – The scheduler should plan tasks on a clus-

ter while utilizing as many resources as possible, while desirably

consuming the minimal amount of the resources by the scheduling

process itself. Since we do not know computational characteristic

of tasks in advance, we do not aim to compute the best optimal

task placement. Even if we had all the information, obtaining the

optimal solution is computationally unfeasible since the scheduling

problem is generally NP-hard. Therefore, our goal is to design a

heuristic that achieve good results in practice considering indus-

try driven use-cases. Extensibility – We aim to provide a generic

platform that allows an easy integration and chaining of existing

tools including black-box applications (e.g. third party applications)

with a possibility to specify their resource requirements as well as

to de�ne arbitrary task types directly. Portability – Our intention

is to build a generic open-source framework that can be adopted

and used by a large variety of research groups using di�erent types

of distributed systems ranging from HPC to Cloud environments.

2.2 Overview
Figure 2 shows the main components of HyperLoom. The compo-

nents can be categorized into frontend and backend sections. The

server /
schedulerclient

worker

worker

worker

pipeline

results

Backend
(C++)

Frontend
(Python)

Figure 2: HyperLoom architecture.

computational backend of HyperLoom consists of worker compo-

nents managed by a centralized server. Worker processes operate on

computational nodes and execute tasks as scheduled by the server.

Server reactively schedules tasks respecting task resource require-

ments and resources available on workers at the time of scheduling.

The frontend of HyperLoom only contains a lightweight client
component (Python3 module) that allows tasks to be de�ned and

chained into pipelines as well as the pipelines to be submitted to

the server. It also allows the results to be gathered back once the

computation completes.

We highlight the following design features of HyperLoom: In-
memory data storage – By default, data produced by a task is

held in the worker RAM memory (RAMDisk) when needed for

further use by other tasks. Reactive scheduling – The scheduler

processes tasks reactively as the computation proceeds. One of the

main objectives of the scheduler is to reduce inter-worker data

transfer by moving computation to data. HyperLoom scheduler is

discussed in detail in Section 3. Direct worker-to-worker com-
munication – Although scheduler aims to reduce inter-worker

data transfers, sometimes they are necessary to utilize the cluster ef-

�ciently. Therefore HyperLoom allows that data produced by a task

on a worker can be fetched from any other worker directly with

no server or �le system overhead. Powerful task abstraction –

HyperLoom o�ers a prede�ned set of task types. These types cover

tasks on a level of simple constants, �le operations, Python tasks,

or binaries. All of the types can be employed using the Python

API. Performance visualization – HyperLoom includes a tool

for providing insights on pipeline performance from various an-

gles. For example, task execution overviews, scheduling details, or

utilization of worker resources, which helps to identify and debug

possible performance bottlenecks in the pipeline.

3 SCHEDULING
Task placement is a crucial property which has a signi�cant impact

on the overall performance. In order to achieve the design goals

de�ned in Section 2.1 while considering the problem properties

introduced in Section 1, we have made the following design choices:

Reactive scheduling – Unknown and imbalanced task char-

acteristics makes it impossible to statically divide a part of the

pipeline to each worker and expect an e�cient and balanced ex-

ecution. Therefore, the scheduling process needs to be a reactive

process respecting the current load on a cluster in real time as the

pipeline execution proceeds.

22

Di�erent strategies depending on the number of pending
tasks – For the scheduler, it is a very di�erent situation when there

are only a few enabled tasks and the cluster is not fully utilized, or

when there are hundred thousands of enabled tasks, the scheduler

is overloaded and there are many options how to schedule tasks to

workers.

We want to re�ect this distinction in the scheduler. When there

are many enabled tasks, tasks can be assigned to a worker even

though the worker resource capacity may not be su�cient for the

task at the time of assignment. This allows to overlap the commu-

nication by computation with a low risk of starving due to the im-

proper assignment. Although each worker maintains a set of tasks

assigned to it, which may in total exceed the worker resource capac-

ity, it only executes the task when the required capacity becomes

available, i.e. workers do not actually overbook their resources.

Moreover, since having many enabled tasks usually implies many

intermediate resources, the scheduler tries to choose a strategy

that leads to the decrease in the number of enabled tasks to free

memory.

Data locality and replication – Data created by a task may

generally have a signi�cant size; therefore, the scheduler utilizes

a certain level of data locality to avoid unnecessary data transfers.

In situations where, from various reasons, some data has to be

transfered to several workers, every of those workers keeps the

data available in-memory as independent replicas for further com-

putations. The fact that, by default, all the data needed for further

computation are always kept in the workers RAM memory and can

be possibly replicated over more workers introduces a very little to

no overhead to cluster �le system.

3.1 De�nitions
Let pipeline be a tuple (T , I ,C) where T is a �nite set of tasks and

I is a mapping I : T → 2
T

where I (t) is a set of input tasks that

has to be completed before t can be executed. C : T → N is a

number of cores needed for the execution of the task. Let us note

that in HyperLoom, inputs of each task are ordered; however, for

the purpose of de�ning the scheduling algorithm, ordering is not

important and we use only sets of input tasks. AlsoC can be simply

generalized to describe more than one resource; however, for the

sake of simplicity, we stay with only one resource in the description.

The mapping O : T → 2
T

is de�ned as O(t) = {t ′ ∈ T | t ∈ I (t ′)}
and represents the set of output tasks. In the example in Figure 3,

we have T = {1, . . . , 9} and I (7) = {4, 6}, O(7) = {8, 9}, C(7) = 4.

For the rest of the text, we �x a pipeline (T , I ,C) and a �nite set

of workers W together with a function R : W → N that de�nes

the number of cores in each worker. In the example,W = {A,B},
R(A) = 4, and R(B) = 6.

Now, we de�ne mappings S and P to describe a state of a pipeline

execution: S : T → {⊥} ∪ N (size of task results) and P : T → 2
W

(task placements). If S(t) = ⊥ than t has not been computed yet and

its size is unknown; if S(t) ∈ N then t was computed and the S(t) is

the size of the resulting data. Mapping P assigns tasks to workers.

If S(t) , ⊥ then P(t) determines which workers hold the result of t .
In the case of S(t) = ⊥ then if P(t) = {w} means that t is currently

computed on a worker w ; otherwise P(t) has to be the empty set (t
was not assigned to any worker). Some values for S and P in our

example are S(1) = 2048, S(5) = S(7) = ⊥, P(1) = {A}, P(7) = {B},
and P(5) = ∅.

Now we de�ne the following two sets and a function related to

S and P :

• Finished tasks: FS = {t ∈ T | S(t) , ⊥}
• Pending tasks: PS,P = {t ∈ T | I (t) ⊆ FS ∧ P(t) = ∅}
• Sum of the data placed on worker w for a set of tasks X :

DS,P : 2
T ×W → N

where

DS,P (X ,w) =
∑

t ∈X ∧ w ∈P (t) ∧ S (t),⊥
S(t) .

Finally, we de�ne the helping function Bound

Boundn (X) = X if |X | ≤ n otherwise ∅ .
In the following text, we use constants that represent param-

eterization of the heuristic algorithm; all of them are denoted by

symbol Ψ and they are de�ned as they appear.

3.2 Scheduling Score Function
The scheduling algorithm (Algorithm 1) is implemented as an it-

erative process that assigns one task each round until there are no

pending tasks or free resources on workers. In each iteration, a

“score” value is computed for each pair of a task t and a worker w
if there are enough resources to run t on w . The value expresses

how e�cient is to plan the task t to the worker w . If a pair (t ,w)
has the highest score than the task t is assigned to worker w , and

the process is repeated. In the following iteration, the score values

may be changed since assigning a task to a worker may change the

data placement.

Note that the score value serves for two purposes at once: (1) to

choose the task among all pending tasks for the current assignment

and (2) to choose the most suitable worker for the selected task.

Algorithm 1 Server scheduling loop

Fill a set of pending tasks (P) by initial tasks (tasks with no

inputs)

while P , ∅ or there is a running task do
Schedule tasks from P on workers (up to resources of work-

ers)*.

Remove scheduled tasks from P
Wait for a message that a task is �nished

while Process all pending message do
Receive a message that a task t was �nished.

Add new tasks to P that was enabled by �nishing t .
end while

end while

The ScoreS,P function is de�ned as follows

ScoreS,P (t ,w) = Score
′
S,P (t ,w) + Score

′′
S,P (t ,w) + Score

′′′
S,P (t ,w) ,

where

• Score
′
S,P represents a proximity of directly interconnected

tasks,

• Score
′′
S,P represents task resource requirements,

33

• Score
′′′
S,P represents a proximity of tasks with a common

successor.

We discuss the contribution of each of those components in the

following subsections.

3.2.1 Proximity of directly interconnected tasks. It is desired to

run a task at a worker that already contains the data required for

the task execution. Therefore, the scheduler favors a placement

inducing the lowest possible data transfer at a time.

The following scenarios describe two of basic properties that we

want from score for tasks t1 and t2.

Scenario: One has everything, other nothing Let assume

that all data for task t1 are located on the worker w1 and other

workers have nothing; the size of input data for t1 on worker w1

is 1 GB. Similarly, all data for task t2 are located on the worker

w1 and other workers have nothing; the size of input data for t2
on worker w1 is 2 GB. Obviously, we would like to achieve that

the score for (t1,w1) is a large positive number and score for all

(t1,w),w ∈W \ {w1} should be a (relatively) large negative value.

This also holds for the case of t2. Because of the data sizes, assigning

t2 to w1 is more important than t1 to w1. Moreover, if we have to

compute one of these tasks on a worker di�erent from w1, it is

better to choose t1. The score function has to respect this.

Scenario: Equality Assume that executing t1 on any worker

needs to transfer same amount of data. For instance, (Example A)

all workers have all data (zero transfer for all) or (Example B) each

worker has a unique piece of the data with the same size that others

do not have. In such case we want to assign zero score for each pair

containing t1 since there is no a�nity to any worker even we have

to transfer some data (Example B).

The score value is a dimensionless quantity; but it can be very

roughly interpreted as follows: If score for pair (t ,w) is a positive

number s , then we can expect to transfer s bytes more (in average)

when t is assigned to a di�erent worker than w . If s is a negative

number, then we could transfer −s bytes less (in average) if we

assign data to di�erent than w .

Score
′
S,P is computed as follows

Score
′
S,P (t ,w) = DS,P (I (t),w) −

∑
w ′∈W DS,P (I (t),w ′)

|W | .

3.2.2 Resource requirements. Score′′ favors tasks with higher

resource requirements as these are more challenging to be sched-

uled (bonus for each extra cpu) and also favors tasks with more

successors (to prioritize tasks that may enable other tasks that can

be processed in parallel).

Score
′′
S,P (t ,w) = max {C(t) − 1, 0} Ψcpu + |O(t)|Ψoutput ,

where constants Ψcpu and Ψoutput control the level of contribution

of both members.

3.2.3 Proximity of tasks with common successor. Let us consider

a set of tasks with a common successor. Given the fact that such

successor requires outputs of all its direct ancestors in order to

run, it is desired to schedule the tasks to run close to each other

(ideally at the same worker). When tasks are not executed at the

same worker, an inter-worker data transfer is induced.

1
Size: 2kB
Placed on: A 4

Size: 120MB
Placed on: A, B 6

Size: 1.3MB
Planced on: B

2
need
CPUs: 2 5

need
CPUs: 2 7

need CPUs: 4
Running on B

3 need CPUs: 4 8 need CPUs: 1 9 need CPUs: 4

Worker A

1 4

Total CPUs: 4
Free CPUs: 4

Worker B
4 6

Total CPUs: 6
Free CPUs: 2

7

Computed tasks

Pe
n
d
in

g
 t

as
ks

R
u
n
n

in
g
 tasks

Server

1 Finished taskLegend: Unfinished task8

Task Id

Input dependancy

scheduled task queue
scheduled task queue

Figure 3: An example of a pipeline execution state

Score
′′′

considers data locality of the inputs of tasks as follows

Score
′′′
S,P (t ,w) =∑

t ′∈BoundΨex (O (t))
min

{
Ψl imit ,

D(BoundΨex (I (t ′)) ∩ FS ,w)
Ψf actor

}
,

where Ψex , Ψl imit , and Ψf actor are tunable constants.

Generally, Score
′′′

is restricted and bounded for two reasons.

First, the situation in the cluster may be a very di�erent when t is

actually �nished; therefore, the impact of sizes of “neighbor tasks”

is only approximated. Second, a task may have a large number of

neighbors, hence Score
′′′

is computed only if there is a relatively

small number of neighbors for performance reasons. Usually, when

there are many neighbors, they are spread out all over the nodes so

the impact of Score
′′′

on choosing the best worker for t is limited.

3.3 Scheduling Algorithm
The presented architecture allows to dynamically react on a given

situation and utilize real-time information: what is the current

utilization of workers and real sizes of the results produced by

�nished tasks (i.e. we can estimate the cost of data transfers).

Figure 3 captures a pipeline execution in the following state:

• Tasks 1, 4, and 6 have �nished. Task 1 has been �nished

right now; this event puts tasks 2 and 5 into the set of

pending tasks.

• Task 7 is running.

• Inputs for task 3, 8, and 9 have not been computed yet and

thus cannot be executed.

In this situation, we can expect that the scheduler dispatches

task 2 on worker A, and task 5 on worker B. This also triggers a

data transfer of the result of task 1 from worker A to worker B.

We describe the scheduling algorithm more formally in Algo-

rithm 2.

44

Algorithm 2 Scheduling algorithm

function ScheduleTasks(S, P)

S1 ← S
P1 ← P
R1 ← R
` ← max{Ψmintasks ,Ψf r eecpu

∑
w ∈W R(w)}

T ′ ← Subset of PS,P with at most ` elements with minimal

ids.

for i = 1, 2, . . . do
X ← {(t ,w,x) ∈ T ′ ×W × N | C(t) ≤ Ri (w) ∧ s =

ScoreSi ,Pi (t ,w)}
if X = ∅ then

return(Si , Pi) . Return a new S and P
end if
(tR ,wR) ← (t ,w) such that (t ,w, s) ∈ X and s is minimal

(among X).

Assign task tR to worker wR .

Si+1 = λt . if t = tR then Ψsize else Si (t)
Pi+1 = λt . if t = tR then Pi (t) ∪ {wR } else Pi (t)
Ri+1 = λw . if w = wR then Ri (w) −C(t) else Ri (t)

end for
end function

4 PERFORMANCE
We evaluated HyperLoom performance and scalability through a

series of experiments on a physical testbed.

We evaluate the performance by measuring overall pipeline

execution time – the period of time it takes for the pipelines to be

completed. We measure the elapsed time between the submission

and successful completion of the pipeline.

4.1 Test Scenarios
We have designed three test cases. Two synthetic, devoted to evalu-

ate performance of HyperLoom in comparison to Dask/Distributed,

and one derived from a compound-activity modeling pipeline to

demonstrate the scalability of HyperLoom for real-world applica-

tion.

50kh – a synthetic test case designed to generate intensive sched-

uling load. The assembled pipeline contains 50k independent tasks

that each executes the hostname program. Since this program com-

pletes instantly, it forces the scheduler to react promptly in order

to keep workers utilized.

gridcat – a synthetic test case designed to evaluate scheduling

quality. The assembled pipeline contains 40 tasks that each generate

200MB of data, followed by a layer of 1,600 tasks that represent

concatenations of every possible pair of the data generated in the

�rst layer, followed by a layer of another 1,600 tasks that compute

md5 hashes of the concatenated data. If the scheduler does not

utilize the location of the data, it will induce a signi�cant inter-

worker data transfer.

mlchemo – a test case derived from an existing scienti�c work-

�ow used for novel drug discovery. This pipeline performs a nested

5×5 cross-validation with hyper-parameter search for machine-

learning based models capturing compound-activity prediction.

The shape of this pipeline is similar to the one depicted in Figure 1.

Table 1: Comparison of the pipeline execution time [s] in
HyperLoom and Dask/Distributed (50kh, gridcat)

50kh gridcat

workers HyperLoom D/D HyperLoom D/D

1 141.48 359.00 119.78 N/A

8 19.66 81.91 40.47 N/A

16 11.24 71.03 47.72 360.72

32 17.41 73.10 43.42 162.00

64 34.28 73.80 41.98 89.45

The pipeline contains a mix of long running tasks such as model-

ing and validation done by LibSVM [1] – a widely used support

vector machine implementation and short running tasks providing

auxiliary functionality.

4.2 Testbed
All the experiments have been performed on a dedicated testbed

using up to 64 identical physical computational nodes, each with

two 12-core Intel Xeon E5-2680v3 processors (2.5GHz)
1

and 128

GB of physical RAM memory. The nodes are interconnected by 7D

Enhanced hypercube In�niband [10] network (56 Gbps). Nodes run

Red Hat Enterprise Linux 6.5 [4].

4.3 Experiment 1: Scheduling Overhead
We contrast the scheduling overhead in HyperLoom and Dask/Dis-

tributed by comparing the pipeline execution time of the 50kh test

case that contains large number of independent short running tasks.

Thus, 50kh is expected to stress the reactive scheduling process

which allows us to analyze the scheduling overhead.

Table 1 compares execution time of 50kh using both, HyperLoom

and Dask/Distributed, executing the pipeline on 1, 8, 16, 32, and 64

workers. In all of the cases, HyperLoom signi�cantly outperforms

Dask/Distributed completing the pipeline in less than half of the

time. As the pipeline only contains independent short running tasks,

we argue that the performance di�erence in this case is caused by

the higher scheduling overhead.

4.4 Experiment 2: Scheduling Quality
In some cases, tasks generate signi�cant amount of data. As a con-

sequence, a suboptimal task placement results in delays due to data

transfer between workers. In this regard, we have designed the

gridcat test case to simulate this type of scenarios. We measure the

execution time of gridcat in both, HyperLoom and Dask/Distributed

using 1, 8, 16, 32, and 64 computational nodes. While HyperLoom

successfully completes the pipeline execution in all of the test sce-

narios, the Dask/Distributed implementation fails when using less

than 16 nodes due to an out-of-memory error. In all of the cases

when both of the implementations �nish, HyperLoom signi�cantly

outperforms Dask/Distributed. The exact �gures for this experi-

ment can be found in Table 1.

1http : //ark .intel .com/products/81908/Intel −Xeon−Processor −E5−
2680 − v3 − 30M −Cache − 250 −GHz

55

Table 2: HyperLoom scalability - strong and weak scaling
experiments performed using the mlchemo test case.

Strong Scaling Weak Scaling

workers t [s] SSE t [s] WSE

1 29,363 1.00 334 1.00

8 3,576 1.03 338 0.99

16 1,817 1.01 351 0.95

32 1,020 0.90 368 0.91

64 559 0.78 374 0.89

4.5 Experiment 3: Scalability
We evaluate HyperLoom scalability using the mlchemo test scenario

executing the pipeline on 1, 8, 16 and 64 workers (24 CPU cores each)

and measure the total execution time for each. We demonstrate the

performance for both, weak and strong scaling.

For the strong scaling experiments, we only increase the number

of workers while keeping the pipeline size constant (~460k tasks).

For the weak scaling experiments, we linearly increase the pipeline

size with the increasing number of workers by replicating a base

mlchemo pipeline (~12.5k tasks × # workers).

We compute strong scaling e�ciency (SSE) as follows

SSE =
t1
Ntn
, (1)

where t1 is the execution time running on a single worker, N is

the number of workers and tn is the execution time running on N
workers.

We compute weak scaling e�ciency (WSE) as follows

WSE =
t1
tn
, (2)

where t1 is the execution time running on one worker, and tn is the

execution time running on N workers.

In Table 2, we observe almost linear decrease of the execution

time with the increasing number of workers. Concretely, the exe-

cution time decreases from more than 8 hours (1 worker) to less

than 10 minutes (64 workers). The SSE values are derived from the

respective execution times using equation 1. Although, in the long

run, the SSE decreases with the increasing number of workers, the

observed decrease is very moderate; from SSE 1.0 (1 worker) to

SSE 0.8 (64 workers). It is noteworthy that for the cases with 8 and

16 workers we even observe SSE to be slightly higher than 1.

Table 2 also shows the execution time for the weak scaling ex-

periments where the number of tasks employed in the pipeline

increases linearly with the number of workers. Ideally, we would

expect that the execution time remains constant for all of the exper-

iments. Nevertheless, increasing the pipeline and cluster size also

increases the overall system overhead, which causes the execution

time to increase. In particular, the execution time increases from 334

seconds (1 worker, ~12.5k tasks) to 374 seconds (64 workers, ~800k

tasks). The WSE values are derived from the respective execution

times using equation 2. WSE slightly decreases from 1 (1 worker)

to 0.9 (64 workers).

5 CONCLUSIONS
We introduced HyperLoom, an open-source platform for an e�cient

de�nition and execution of scienti�c pipelines in distributed envi-

ronments. HyperLoom enables to chain large number of computa-

tional tasks into a complex end-to-end data processing pipelines us-

ing a simple Python interface as a gateway to the high-performance

backend of HyperLoom.

We analyzed HyperLoom performance using both synthetic and

real test cases scaling up to hundreds of thousands of tasks dis-

tributed across hundreds of CPU cores. HyperLoom signi�cantly

outperformed Dask/Distributed in synthetic test cases ranging from

~6.3× to ~2.2× better performance for the 50kh test case and from

~7.6× to ~2.1× better for the gridcat test case. We have also suc-

cessfully deployed a pipeline to address the challenge of generat-

ing compound-target activity predictions for publicly available big

chemogenomics datasets [8], which proves HyperLoom potential

to be used for real-world end-to-end data processing applications.

6 ACKNOWLEDGEMENTS
This project has received funding from the European Union’s Hori-

zon 2020 Research and Innovation programme under Grant Agree-

ment no. 671555 (ExCAPE) and by the IT4Innovations infrastruc-

ture which is supported by The Ministry of Education, Youth and

Sports from the Large Infrastructures for Research, Experimental

Development and Innovations project “IT4Innovations National

Supercomputing Center – LM2015070”.

REFERENCES
[1] Chih-Chung Chang and Chih-Jen Lin. 2011. LIBSVM: a library for support vector

machines. ACM Transactions on Intelligent Systems and Technology (TIST) 2, 3

(2011), 27.

[2] Weiwei Chen and Ewa Deelman. 2011. Work�ow Overhead Analysis and

Optimizations. In Proceedings of the 6th Workshop on Work�ows in Support
of Large-scale Science (WORKS ’11). ACM, New York, NY, USA, 11–20. DOI:
http://dx.doi.org/10.1145/2110497.2110500

[3] Ewa Deelman, Gurmeet Singh, Mei-Hui Su, James Blythe, Yolanda Gil, Carl

Kesselman, Gaurang Mehta, Karan Vahi, G. Bruce Berriman, John Good, Anasta-

sia Laity, Joseph C. Jacob, and Daniel S. Katz. 2005. Pegasus: A Framework for

Mapping Complex Scienti�c Work�ows Onto Distributed Systems. Sci. Program.
13, 3 (July 2005), 219–237. DOI:http://dx.doi.org/10.1155/2005/128026

[4] Red Hat. 2017. Red Hat Enterprise Linux. (2017). https://www.redhat.com/

en/technologies/linux-platforms/enterprise-linux [Online; accessed 31-March-

2017].

[5] HTCondor. 2017. HTCondor. (2017). https://research.cs.wisc.edu/htcondor/

index.html [Online; accessed 31-March-2017].

[6] Samuel Lampa, Jonathan Alvarsson, and Ola Spjuth. 2016. Towards agile large-

scale predictive modelling in drug discovery with �ow-based programming

design principles. Journal of Cheminformatics 8, 1 (2016), 67. DOI:http://dx.doi.

org/10.1186/s13321-016-0179-6

[7] Matthew Rocklin. 2015. Dask: Parallel computation with blocked algorithms and

task scheduling. In Proceedings of the 14th Python in Science Conference. Citeseer,

130–136.

[8] Jiangming Sun, Nina Jeliazkova, Vladimir Chupakin, Jose-Felipe Golib-Dzib,

Ola Engkvist, Lars Carlsson, Jörg Wegner, Hugo Ceulemans, Ivan Georgiev,

Vedrin Jeliazkov, Nikolay Kochev, Thomas J. Ashby, and Hongming Chen. 2017.

ExCAPE-DB: an integrated large scale dataset facilitating Big Data analysis

in chemogenomics. Journal of Cheminformatics 9, 1 (dec 2017), 17. DOI:http:

//dx.doi.org/10.1186/s13321-017-0203-5

[9] Tom White. 2009. Hadoop: The De�nitive Guide (1st ed.). O’Reilly Media, Inc.

[10] Wikipedia. 2017. In�niBand — Wikipedia, The Free Encyclopedia. (2017).

https://en.wikipedia.org/w/index.php?title=In�niBand&oldid=772443735 [On-

line; accessed 31-March-2017].

[11] Matei Zaharia, Reynold S Xin, Patrick Wendell, Tathagata Das, Michael Armbrust,

Ankur Dave, Xiangrui Meng, Josh Rosen, Shivaram Venkataraman, Michael J

Franklin, and others. 2016. Apache Spark: a uni�ed engine for big data processing.

Commun. ACM 59, 11 (2016), 56–65.

66

http://dx.doi.org/10.1145/2110497.2110500
http://dx.doi.org/10.1155/2005/128026
https://www.redhat.com/en/technologies/linux-platforms/enterprise-linux
https://www.redhat.com/en/technologies/linux-platforms/enterprise-linux
https://research.cs.wisc.edu/htcondor/index.html
https://research.cs.wisc.edu/htcondor/index.html
http://dx.doi.org/10.1186/s13321-016-0179-6
http://dx.doi.org/10.1186/s13321-016-0179-6
http://dx.doi.org/10.1186/s13321-017-0203-5
http://dx.doi.org/10.1186/s13321-017-0203-5
https://en.wikipedia.org/w/index.php?title=InfiniBand&oldid=772443735

